12 Hasse Diagram. Lattice.

83. Given is the relation $R = \{(a, b) \mid a \le b\}$ on the set $S = \{1, 2, 3, 4\}$.

- (i) Show that R is a partial order relation.
- (ii) Sketch the Hasse diagram.
- (iii) Does S have the structure of a lattice with respect to the relation R? (Justify your answer!)

84. Let $S = \{1, 2, \dots, 10\}$. A relation on the set S is defined as follows:

$$xRy \Leftrightarrow x+y \text{ is even and } x \leq y.$$

- (i) Show that R partially orders the set S.
- (ii) Draw the Hasse diagram with respect to R.
- (iii) Find all *R*-maximal elements, if they exist.
- (iv) Does S have the structure of a lattice with respect to R?

85. Given is a partial order relation $\{(A, B) \mid A \subseteq B\}$ defined on the power set $\mathcal{P}(S)$ of the set $S = \{a, b, c\}$.

- (a) Sketch the Hasse diagram.
- (b) Find the lower and upper bounds for the subset $\{\{a\}\}$.
- (c) Find the lower and upper bounds for the subset $\{\{a, c\}\}$.
- (d) Find the lower and upper bounds for the subset $\{\{a\}, \{a, c\}, \{c\}\}$.

f f f e e e e c a

86. The partial order relation \preccurlyeq on the set $S = \{a, b, c, d, e, f, g, h, i\}$ is defined by the Hasse diagram on the left.

- (a) Find all \preccurlyeq -lower bounds and the \preccurlyeq -greatest lower bound of the subset $\{d, e\}$, if they exist.
- (b) Find all \preccurlyeq -upper bounds and the \preccurlyeq -least upper bound of the subset $\{f, c\}$, if they exist.
- (c) Determine whether S has the structure of a lattice with respect to \preccurlyeq . Justify your answer in detail.

87. (2nd colloquium, January 2022) Let the relation of divisibility R be defined on the set $S = \{2, 4, 5, 6, 7, 10, 14, 18, 20, 24, 25\}$:

 $xRy \quad \Leftrightarrow \quad x \text{ divides } y.$

- (a) Draw the Hasse diagram with respect to R.
- (b) Find all *R*-maximal elements, if they exist.
- (c) Find all *R*-minimal elements, if they exist.
- (d) Find all R-lower bounds of the subset $\{24\}$, if they exist.

- (e) Find the *R*-greatest lower bound of the subset $\{24\}$, if it exists.
- (f) Determine whether S has the structure of a lattice with respect to R.

88. Draw the Hasse diagram of the partial order (D(60), |). Here, $D(60) = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ and | is the relation of divisibility. Also, find $|-\sup(\{20, 30\}), |-\sup(\{2, 6\}), |-\sup(\{2, 15\}), |-\inf(\{20, 30\}), \text{ and } |-\inf(\{6, 5\}), \text{ if they exist.}$

89. The partial order R on the set S is given by the following Hasse diagram.

Does the set S have the structure of a lattice with respect to R? Justify your answer in detail.

All above math problems are taken from the following website: https://osebje.famnit.upr.si/~penjic/teaching.html. THE READER CAN FIND ALL SOLUTIONS TO THE GIVEN PROBLEMS ON THE SAME PAGE.